Chem. Ber. 106, 1069–1075 (1973)

1069

Die Kristall- und Molekülstruktur von N₃S₃F₃

Bernt Krebs* und Siegfried Pohl**

Institut für Anorganische Chemie der Universität Kiel*, D-2300 Kiel, Olshausenstr. 40-60, und Anorganisch-Chemisches Institut der Universität Göttingen**, D-3400 Göttingen, Hospitalstr. 8/9

Eingegangen am 11. Dezember 1972

Die Struktur von N₃S₃F₃ wurde röntgenographisch aus Diffraktometer-Einkristalldaten bestimmt. Das Molekül bildet einen leicht gewellten (S-N)₃-Sechsring mit axialer Stellung der Fluoratome. Es hat im Gegensatz zum N₄S₄F₄ keine alternierenden Doppel- und Einfachbindungen im Ring. Die S-N-Bindungslängen betragen 1.587 (3) und 1.598 (3) Å, die S-F-Abstände 1.610 (3) Å. N₃S₃F₃ kristallisiert rhomboedrisch in der Raumgruppe $R\overline{3} - C_{3i}^2$ mit den (hexagonalen) Gitterkonstanten a = 10.238 (8) Å und c = 9.535 (7) Å.

The Crystal and Molecular Structure of N₃S₃F₃

The crystal structure of N₃S₃F₃ has been determined from single crystal X-ray data. The molecule forms a slightly puckered six-membered (S-N)₃ ring with axial fluorine atoms. In contrast to N₄S₄F₄ it has no alternating single and double bonds in the ring. The S-N bond lengths were found to be 1.587 (3) and 1.598 (3) Å, the S-F bond lengths to be 1.610 (3) Å. N₃S₃F₃ crystallizes in the rhombohedral space group $R\overline{3} - C_{34}^2$.

Cyclische S-N-Verbindungen zeigen interessante Probleme der chemischen Bindung, da sie befähigt sind, delokalisierte π -Bindungen im Ringsystem auszubilden.

So fand man dieses Verhalten durch Röntgenstrukturuntersuchungen bei $N_3S_3Cl_3^{11}$, $N_3S_3O_3Cl_3^{21}$ und beim unsubstituierten $S_4N_4^{30}$, die in den $(S-N)_3$ - bzw. $(S-N)_4$ -Ringen jeweils einheitliche Bindungslängen zeigen. Lediglich das $N_4S_4F_4^{40}$ weist annähernd alternierende Doppel- und Einfachbindungen auf. Dieses abweichende Verhalten, das im Gegensatz zu den entsprechenden substituierten Cyclophosphazenen steht, wurde z. B. auf den stark polarisierenden Einfluß der Fluoratome zurückgeführt.

Zur Klärung der Frage, ob dieser ungewöhnliche Effekt Allgemeingültigkeit in fluorsubstituierten S-N-Cyclen besitzt oder ob z. B. sterische Gründe, bedingt durch die Konformation des Ringes, eine Rolle spielen, wurde die Struktur von $N_3S_3F_3$ untersucht (s. auch l. c.⁵⁾).

¹⁾ G. A. Wiegers und A. Vos, Acta Crystallogr. 20, 192 (1966).

²⁾ A. C. Hazell, G. A. Wiegers und A. Vos, Acta Crystallogr. 20, 186 (1966).

³⁾ D. Clark, J. Chem. Soc. **1952**, 1615; B. D. Sharma und J. Donohue, Acta Crystallogr. **16**, 891 (1963).

⁴⁾ G. A. Wiegers und A. Vos, Acta Crystallogr. 14, 562 (1961); 16, 152 (1963).

⁵⁾ B. Krebs, S. Pohl und O. Glemser, J. C. S. Chem. Commun. 1972, 548.

Experimentelles, Gitterkonstanten und Raumgruppe

Nach Schröder und Glemser⁶⁾ entstehen durch Einwirkung von AgF₂ auf in CCl₄ suspendiertes N₃S₃Cl₃ farblose Kristalle von Trithiazyltrifluorid N₃S₃F₃. Aus der so dargestellten Verbindung wurde ein Einkristall mit den Dimensionen 0.30 \times 0.22 \times 0.14 mm unter Feuchtigkeitsausschluß in ein Markröhrchen eingeschlossen. Da das N₃S₃F₃ schon bei Raumtemperatur einen erheblichen Dampfdruck besitzt, wurden die Präparation und alle Strukturuntersuchungen unter Kühlung vorgenommen.

N₃S₃F₃ kristallisiert rhomboedrisch mit den Gitterkonstanten (in hexagonaler Aufstellung bei -20° C) a = 10.238 (8) Å, c = 9.535 (7) Å, V = 865.5 Å³, Z = 6 Moleküle/hexagonale Zelle. Aus den systematischen Auslöschungen (Reflexe nur mit -h + k + l = 3 n vorhanden), der *Laue*-Symmetrie und einer statistischen Analyse der normalisierten Strukturfaktoren ergab sich die Raumgruppe $R3 - C_{3i}^2$.

Die experimentell bestimmte Dichte (pyknometrisch) wurde zu $d_{exp} = 2.27$ g/cm³ (bei +20°C), die röntgenographische Dichte zu $d_{ront} = 2.284$ g/cm³ (bei -20°C) bestimmt.

Zur Ermittlung der Intensitäten wurden auf einem computergesteuerten Hilger-Watts-Vierkreisdiffraktometer bei $-20 \pm 2^{\circ}$ C 1278 Reflexe im Bereich sin $\Theta/\lambda < 0.64$ Å⁻¹ nach der ω -2 Θ -scan-Methode mitMo_{Ka}-Strahlung (Zr-Filter, Szintillationszähler, $\lambda = 0.70926$ Å) gemessen; die Daten wurden durch Mittelung, *Lorentz*- und Polarisationsfaktor-Korrekturen und eine *Wilson*-Statistik zu 425 unabhängigen Strukturfaktoren reduziert. Bei einem linearen Absorptionskoeffizienten von 12.4 cm⁻¹ für Mo_{Ka}-Strahlung und einem maximalen μR -Wert von 0.2 für den verwendeten Einkristall konnte auf eine Absorptionskorrektur verzichtet werden.

Strukturbestimmung

Die Struktur wurde aus der dreidimensionalen *Patterson*-Synthese gelöst und nach dem Verfahren der kleinsten Fehlerquadrate verfeinert⁷). Die weitere, zunächst mit isotropen, später mit anisotropen Temperaturfaktoren in der Form $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)]$ vorgenommene Verfeinerung konvergierte zu

und

$$R_{1} = \sum(||F_{0}| - |F_{c}||) / \sum |F_{0}| = 0.044$$

$$R_2 = \left[\sum w \left(|F_0| - |F_c| \right)^2 / \sum w F_0^2 \right]^{1/2} = 0.044.$$

Das Gewichtsschema basiert auf der statistischen Varianz der Werte mit einem zusätzlichen, der Nettozählrate I proportionalen Glied:

$$w = 4 F_o^2 / \sigma^2 (F_o^2),$$

wobei

$$\sigma(F_{c}^{2}) = [A + (t_{A}/2t_{B})^{2} (B_{1} + B_{2}) + (0.03 I)^{2}]^{1/2} \cdot Lp^{-1}.$$

(A: Bruttozählrate, gemessen in der Zeit t_A ; B_1 , B_2 : Untergrundzählraten, gemessen jeweils in der Zeit t_B ; Lp = Lorentz- und Polarisationsfaktor). Bei Reflexen mit

⁶⁾ H. Schröder und O. Glemser, Z. Anorg. Allg. Chem. 298, 78 (1959).

⁷⁾ Alle Rechnungen wurden auf einer UNIVAC 1108-Anlage ausgeführt. Neben eigenen Programmen wurden modifizierte Brookhaven National Laboratory-Versionen der Busing-Martin-Levy-Programme ORFLS, ORTEP und ORFFE sowie das Programm FORDAP von A. Zalkin verwendet.

zeigte Restelektronendichten von maximal \pm 0.4 e⁻/Å³.

 $I < 3 \sigma(I)$ wurde w = 0 gesetzt. Die Atomformfaktoren für S, N und F wurden den International Tables⁸⁾ entnommen. Eine abschließende Differenz-Fourier-Synthese

Tab. 1. Vergleich der beobachteten und berechneten Strukturfaktoren

ы	N 1	EOB	FCA	54	K 1	FOR	FCA	н	K 1	E 0 B	FCA	н	K 1	FOB	FCA	н	ĸ	L	FOB	FCA
	2 12	10			1.11	4.0	4.6		3 . 3	127	- 1 22		7 3	71	72	4	6	-	65	65
0	0.15	19	-15	£.	1-11	04	60	2	2 - 2	121	-122		1 3		12					
9	09	106	102	- 2	1 - 6	126	131	3	3 C	141	-140	4	1 6	68	68		'	~1	60	-68
C	6 0	723	651	2	1 - 5	67	68	3	33	18	~20	4	8 - 4	11	-15	7	c	-8	163	-102
ŋ	0 3	911	765	2	1 - 2	376	374	3	36	12	10	4	8 -1	71	-78	7	0	-5	187	-191
1	0-11	125	-122	2	1 1	328	+360	3	3 9	35	33	9	8 2	175	-168	7	6	~2	228	-234
- 71	0 -0	100	-199	5		50	5.3	3	8-10	43	0.4	5	0-10	18	-8	7	n	1	108	-111
	0.0	170	- 1 - 7 - 7	-	1 1			-		177		ĩ	0 7	- îi	71	-	ò			- 75
1	0 - 5	633	-5/5	~ ~	1 /	1/6	-111	2	4 - 1	1.27	-146	2	0 -/				~			
1	0-2	968	-881	2	1 19	48	- 96	- 3	9 - 4	44	- 41	5	0 -4	1/1	-180		U		- 7 Z	22
1	0 1	192	-169	2	2 -9	148	-152	3	4 -1	269	-269	5	0~1	80	-80	7	1	-9	58	56
1	0 4	354	- 347	2	2 - 6	621	-608	3	.4 2	196	164	5	02	213	-211	7	1	~6	195	142
-	0 7	200	238		2 - 3	797	- 364	3	A 5	0	- 6	5	0 5	143	-147	7	1	~ 3	262	275
		20.1	237	-	2 0	0.75		ź		1112		5	0 9	31	-75	7		ñ	378	327
1	0 10	00	0/		2 0	0/2	-929					-				-	- 2	ž	250	267
1	1-12	- 58	- 55	2	2 3	108	-169	3	5 - 8	10	•	,	1 -6	190	~164		1		250	231
1	1 - 9	59	7	2	26	193	152	- 3	5 ~ 5	279	277	5	1 - 5	385	-395	7	I	•	95	98
1	1 -6	20	- 20	2	2 9	61	66	3	5 -2	243	255	5	1 -2	479	-460	7	1	9	48	43
-	1 - 3	232	228		3-10	31	22	3	5 1	828	435	5	1 1	92	-86	7	2	~7	17	15
-	1 6	671	620	-	1 . 7	51	26	ź	é é	272	274	5	1 4	145	-172	7	2	B	38	35
1	1 0	571	557		3 - 1	20		- ÷			270		1 1	105	100	÷.	5		25	51
1	13	283	275	2	3 - 4	355	353	3	· ·	50	50	2	1 /	702	105		~	-1	23	23
1	16	2.62	258	2	3 - 1	533	535		6 - 6	83	75	5	1 10	48	53	7	5	- 2	- 58	-36
1	1 9	71	65	2	32	295	287	3	6 - 3	81	~ 89	- 5	2 -9	62	61	7	2	5	16	-9
1	1 1 2	26	25	2	35	330	333	3	6 3	229	-252	5	2 -6	259	264	7	2	8	43	-41
ī	2-10	43	4.0	2	3 8	7	6	3	6 3	270	-277	5	2 - ?	350	371	7	3	-5	40	36
-	2.7			-	7 11	10	- 17	7		250	- 264	6	2 0	0.0.2	78.6	7		~ 2	5 A	112
			40	~	2.11	10	- 15				- 2)4	ź	2 3	756	7.0	÷	÷.	-	1 7 2	140
1	2 - 4	331	331	2	4 - 8	70	68	3	7 - 7	6	0	2	2 5	354	368		2		1/2	-164
1	2 -1	786	763	2	4 -5	234	229	3	7 -4	53	-52	5	26	239	239	7	3	4	97	-101
1	2 2	125	117	2	4 -2	192	135	3	7 - 1	25	- 6	5	2 9	58	56	7	3	7	116	-116
1	2 5	928	925	2	9 1	113	101	3	7 2	7	-5	- 5	3 - 7	30	26	7	4	-6	214	-212
-	2 8	6.0	- 4 4				- 4		7 5	38	a G	5	3 -0	6.0	-65	7		- 3	2(2	-207
	÷	10	-00					5		100	- 04	é		117	-107	÷		á	212	-100
1	2 11	10			/				5 - 7	102	- 70		3 -1	111	-107					170
1	3-11	197	143	2	4 10	- 36	- 30	- 3	8 - 2	112	-112	5	32	168	-172		4	5	50	
1	3 -8	251	260	2	59	33	37	3	8 1	53	~51	5	35	137	~143	7	4	6	61	61
1	3 - 5	130	129	2	5 - 6	81	78	3	8 9	45	-41	5	38	66	-63	7	5	~4	97	99
1	3 -2	54.2	513	2	5 - 3	52	- 53	3	9 - 3	108	107	5	4 - 8	30	32	7	5	-1	120	118
÷		105		2		200	-207	7	, ó ř	147	14.2	ś	0 -5	50	10		÷.		1 2 1	110
		009	-623		5 0	207	- 275	1	7 0	105	102	2				-	ĩ	-	1.1.1	117
1	3 4	104	~108	- 2	> >	154	-158	د		131	125	2	4 -2	108	*/		°	1	24	29
1	37	289	~ 290	2	56	279	-282	4	0-11	20	-14	5	4 1	17	6	8	0	-7	74	-76
1	3 10	117	~115	2	59	65	-63	9	0 -8	15	~ 14	5	4 9	56	55	8	0	-4	42	-48
1	4 ~9	118	~120	2	6 -7	149	-148	4	0 -5	212	213	5	4 7	30	-29	8	-0	-1	184	-186
÷.	a - 6	325	- 316	2	6 - 6	148	-147		$n \rightarrow 2$	102	102	5	5 -6	63	-68	8	0	2	13	~13
-		205	077	ĩ		220		÷.	0 I			÷.			- 114	ő		Ē	70	-40
1	4 - 3	285	~ 211		0 -1	229	-205		0 1	409	409	2	5	- 11/	-110				10	-00
1	9 C	313	-319	- 2	6 2	76	82	4	0 4	158	195	5	5 0	130	-135	в	Ŀ	8	23	
1	4 3	96	-99	2	6 5	92	95	4	07	46	46	5	5 3	120	~118	8	1	8	20	-16
1	4 6	131	135	2	69	120	117	4	0 1 3	15	3	5	58	24	-26	8	1	-5	60	58
1	4 9	62	61	2	7 - 8	39	35	4	1 -9	10	-12	5	6 -4	15	15	8	1	-2	61	60
î	5-10	1.4	-6	2	7 - 5	91	93	4	1 -6	100	106	5	6 -1	53	53	8	ī	ī	102	9.6
				-		1.0	110				10	Ē		2.					70	7.0
1	3 - /				1 - 3	100	100		1 - 2	10	- 1 7	2	° 4	24	-11		÷.	-		10
1	5 - 4	15	-12	2	1 1	103	106	4	1 0	386	367	5	6 5	13	-17	8	1		10	1
1	.5 -1	71	-73	2	7 4	96	97	4	1 3	1	-5	5.	7 -2	- 15 1	-152	8	2	-6	78	-76
1	52	19	0	2	77	20	- 20	4	1 6	132	1 36	5	71	82	-81	8	2	- 3	102	-190
1	5 5	71	-73	2	8 ~ 6	85	~85	9	1 9	5	0	5	7 9	38	- 39	8	2	0	155	-148
	5 9	11			8 - 3	8.8	-01		2-10	4.0	30	Å	0 - 9	84	8.4	9	2	3	78	-80
-				-				-	2 10						200		÷	í.		
1	6 -8		~56	2	8 U		- 86	4	2 - 1	1 20	1.52		0 -6	202	208	8	2	•	24	~ 29
1	6 - 5	13	-8	2	8 3	55	- 56	4	2 - 4	55	- 55	6	0 -3	267	277	в	3	-4	122	129
1	6 -2	13	-8	2	8 6	8	12	4	2 -1	7	-3	6	0 0	676	643	8	3	-1	180	183
1	6 1	126	129	2	9 - 4	86	82	4	2 2	239	-240	6	0 3	277	280	8	3	2	152	157
	A 9	101	99	2	9 -1	81	* 81	9	2 5	242	-239	6	0 6	240	297	8	3	5	117	118
1	6 7	8.8	86		9 2	55	50		2 8	91	-95		0 9	51	51	8		-2	19	13
-		10			ÓĒ		, e						·	4	16.7	ŏ				- 6 9
r	1-9	14	36	2	¥ 7	14	0	•	5 - 8	74	-/1	0	1 - /	145	142					-48
1	7 -6	16	12	2	10 -2	15	~5	л	5 - 5	63	-63	6	1 -4	110	-117	ы	9		82	- 78
1	7 - 3	38	38	2	10 1	24	20	4	3 - 2	132	-131	6	1 -1	172	-167	9	0	-6	71	70
1	70	82	-85	3	0 - 9	20	22	n,	3 1	98	97	6	1 2	944	-436	9	0	-3	39	-39
-	7 7	20	-27		0 -4	17	14		T h	21	2.7		1 5	0.05	- 414	0	r		190	-197
-			-21	~	0 0			- 2			25						č	-		
1	1 6	08	-00	3	0 - 3	105	-153	4	2.7		88	0	1 8	111	-184	~		2	210	-177
1	79	24	-23	- 3	0 9	776	-708	4	3 10	٩6	44	6	2 -8	112	-111	9	0	6	20.5	-210
1	8 -7	20	14	3	0 7	250	-250	4	4 - 6	93	92	6	2 ~5	293	-298	9		-4	85	-83
1	8 - 4	96	100	3	06	398	-385	9	4 - 9	49	51	6	2 -2	235	-249	9	1	-1	68	-72
1	8 -1	185	190	3	0 9	85	- 85	4	4 - 7	24	14	6	2 1	194	-193	9	1	2	58	53
â	8 9	120	130	÷	1-10	10	-12			14.1	- 10.9	ž	5 .		- 1 7	ć	-	ŝ	80	
2	0 č	127	1 50	2	1-10	10	- 1 1			141	- 140		2 4	- 21	- 4.5	~	-	2		
1	8 5	164	164	3	1 -7	17	-12	5	4 3	109	-112	0	2 7	>6	53	Y	2	-2	61	56
1	8 B	18	19	3	1 - 9	123	130	4	46	212	~216	6	3 - 6	66	-68	9	2	-2	96	46
1	9 - 5	61	60	3	1 -1	269	272	4	4 9	68	- 70	6	3 - 3	49	50	9	2	1	43	43
1	9 -2	30	25	3	1 2	182	190	4	5 - 7	107	-111	6	3 9	17	27	9	2		10	-5
ī	9 1	138	- 133	3	1 5	255	258	9	5 - 4	123	-110		3 3	92	97	9	3	-3	60	-55
:	á .	100	- 127	÷			10		i i	11-	- 1 1 -	ĭ	÷ ,				-	õ	1.5	
1	. 4	128	-123	3	1 1	91	20	2	2 -1	11/	-111	°.	2 6	82	/6	ž	د	2	1.5	<u> </u>
1	10 -3	127	-126	3	1 11	30	30	4	5 2	68	78	6	<u>4</u> -7	26	25	9	3	3	10	-1
1	10 0	112	-105	3	2-11	65	64	4	55	121	121	6	4 -4	127	133	10	£	-5	127	122
1	10 3	31	-28	3	2 -8	104	107	ą	58	108	104	6	4 -1	242	235	10	0	-2	182	175
5	0-10	17	- 7		2 -5	30	31		6 -5	47	45	Ā		14.8	150	10	ō	1	222	22 P
5	0 - 7		- 0.0		2 - 2	117	112		× - 2		70	ž		154	140	10	č	ā	142	100
~	0 -7		- 40		2 - 2	210	375		3 -2	107				100	100	10			192	194
2	17 - 4	55	-52	و	2 1	215	- 255	4	0 1	122	121	•	5 -5	42	40	10	1	- 2	- 10	-28
2	e -1	307	-310	3	24	137	-140	4	6 4	53	56	6	5 -2	32	7	10	1	0	43	-46
2	0 2	8	5	3	27	93	-94	4	67	43	39	6	51	108	-112	10	1	3	115	-186
2	0 5	126	-121	3	2 10	59	- 59	4	7 - 6	Я3	85	6	5 4	107	-112	10	5	-1	16	-15
2	0 8	21	19	3	3 -0	61	- 61	4	7 - 3	91	90	6	6 - 3	8	5	10	2	-	57	-52
Ξ.	0.11		1,	-		120	-110		2 2	20.6	10/	4	6 6		= 2		'n	<u> </u>	10	
		~ ~																		

International Tables for X-Ray Crystallography, Vol. III, Kynoch Press, Birmingham 1962.

Beschreibung der Struktur und Diskussion der Ergebnisse

In Tab. 1 sind die beobachteten und berechneten Strukturfaktoren, in Tab. 2 die endgültigen Atomkoordinaten und Temperaturparameter zusammengestellt. Abbild. 1 zeigt ein $N_3S_3F_3$ -Molekül, Abbild. 2 eine Projektion der Elementarzelle. In Tab. 3 sind die aus den Atomlagen berechneten interatomaren Abstände und Bindungswinkel angegeben. Analog zum $N_3S_3Cl_3^{(1)}$ bildet das $N_3S_3F_3$ einen leicht gewellten S –N-

Lageparame	ter		
Atom	x	у	Z
S	0.17100 (6)	0.03035 (6)	0.30912 (6)
F	0.18762 (19)	0.03117 (18)	0.14114 (18)
N	0.13348 (20)	0.16150 (19)	0.33331 (25)
Anisotrope I	Cemperaturfaktoren		
Atom	β_{11}	β22	β_{33}
S	0.00711 (8)	0.00894 (9)	0.01144 (9)
F	0.01458 (24)	0.01742 (27)	0.01301 (23)
Ν	0.00824 (22)	0.00729 (22)	0.01336 (26)
	β_{12}	β_{13}	β_{23}
S	0.00410 (6)	-0.00013 (4)	-0.00057 (5)
F	0.00674 (20)	0.00461 (16)	-0.00053 (16)
Ν	0.00335 (17)	-0.00019 (16)	-0.00042 (16)

Tab. 2. Atomparameter mit Standardabweichungen^{a)}

^{a)} Die Ziffern in Klammern bezeichnen hier und in der folgenden Tabelle die Standardabweichungen in Einheiten der letzten angegebenen Dezimalstelle.

Bindungsabstände i	und -winkel				
S-N	1.587 (3) Å	N-S-NI		112.6 (2)°	
$S \sim NI$	1.598 (3) Å	S - N - SII		123.2 (1)°	
S - F	1.610 (3) Å	F-S-N		102.1 (2)°	
		F - S - NI		100.8 (2)°	
Intramolekulare Al	bstände nicht gebund	lener Atome			
FF ^I	3.088 Å	$F \dots N^{I}$		2.473 Å	
S SI	2.802 Å	F N		2.487 Å	
$N \dots N^{I}$	2.651 Å	S F ^{II}		3.345 Å	
$S \dots N^{\Pi}$	3.157 Å	$S \dots F^I$		3.362 Å	
Kürzeste intermole	kulare Abstände				
S S ^{III}		3.983 Å	(3.70 Å)		
S FIV, V		3.441, 3.187 Å	(3.20 Å)		
S N ^{III} ,VI		3.411, 3.277 Å	(3.35 Å)		
F FV,VII		2.925, 3.228 Å	(2.70 Å)		
F NVIЦ,VI		3.363, 3.640 Å	(2.85 Å)		
N NIII,IX		3.233, 3.528 Å	(3.00 Å)		

Tab. 3. Interatomare Abstände und Bindungswinkel^{a)}

 a) In Klammern: Summe der van der Waals-Radien nach Pauling. Die römischen Zahlen beziehen sich auf folgende Transformationen der Parameter in Tab. 3:

1	y - x, - x, z	IV	2/3+y-x, $1/3-x$, $1/3+z$	VII $x - y, x, -z$
11	-y, x-y, z	v	2/3-x, $1/3-y$, $1/3-z$	VIII $2/3 - x$, $1/3 - y$, $1/3 - z$
ш	y, y-x, 1-z	VI	1/3 + x - y, $-1/3 + x$, $2/3 - z$	IX 1/3-x, 2/3-y, 2/3-z

Abb. 1. $N_3S_3F_3$ -Molekül. Die Schwingungsellipsoide beziehen sich auf 50 % Wahrscheinlichkeit

Abb. 2. Hexagonale Elementarzelle von $N_3S_3F_3$

Sechsring mit axialer Stellung der Fluoratome. Das Molekül weist im festen Zustand C_3 -Symmetrie auf; Abweichungen von der idealen $C_{3\nu}$ -Symmetrie sind nur sehr gering, wie aus den N-S-F-Winkeln von 100.8° und 102.1° zu ersehen ist. Die S-N-Bindungslängen von 1.587 Å und 1.598 Å können innerhalb der Fehlergrenzen als gleich angesehen werden (Mittelwert 1.593 Å). Da die Standardfehler 0.003 Å betragen, ist die Differenz von 0.011 Å statistisch noch nicht signifikant⁹⁾. Der Bindungsgrad entspricht mit etwa 1.4¹⁰⁾ dem der S-N-Bindungslängen im N₃S₃Cl₃, die zwischen 1.600 (7) Å und 1.614 (7) Å liegen. Für die alternierenden starken und schwachen Bindungen im N₄S₄F₄ mit S-N-Abständen von 1.540 (10) Å bzw. 1.660 (10) Å können Bindungsgrade von 1.7 bzw. 1.1¹⁰⁾ abgeschätzt werden.

In der Reihe der $(S - N)_x$ -Ringe mit π -Bindungen steigt die mittlere S - N-Bindungslänge vom α -N₃S₃O₃Cl₃ (1.564 Å)²⁾ über N₃S₃F₃, N₄S₄F₄ (1.60 Å)⁴⁾ und N₃S₃Cl₃ zum S₄N₄ (1.63 Å)³⁾ parallel zur Abnahme der formalen Oxidationsstufe des Schwefels von sechs über vier nach drei kontinuierlich an. Während der Schwefel in der Oxidationsstufe sechs kein freies Elektronenpaar mehr besitzt, macht sich in der Reihe der anderen Verbindungen dessen abstoßende Wirkung gegenüber dem nichtbindenden sp²-Elektronenpaar des Stickstoffs zunehmend bemerkbar. Der geringe Unterschied der Bindungslängen im N₃S₃F₃ und N₃S₃Cl₃ ist möglicherweise auf den Unterschied der Elektronegativitäten von F und Cl zurückzuführen.

Der relativ lange S-F-Bindungsabstand im N₃S₃F₃ gleicht S^{IV}-F-Abständen in anderen N-S-F-Verbindungen. So beträgt der Mittelwert der S-F-Bindungen im Hg(NSF₂)₂¹¹⁾ 1.611 Å und im ClNSF₂¹²⁾ 1.596 Å. Der S-N-S-Winkel von 123.2° deutet auf eine sp²-Hybridisierung des Stickstoffs hin, wie sie auch bei den analogen Cyclophosphazenen (PNHal₂)₃^{13,14)} (Hal = F, Cl) auftritt. Wie die Bindungswinkel zeigen (N-S-N: 112.6 bzw. 113.4°, S-N-S: 123.2° bzw. 124.0°), sind die (S-N)₃-Ringe im N₃S₃F₃ und N₃S₃Cl₃ bemerkenswert ähnlich. Auch der Abstand der Ebenen durch die drei S- und die drei N-Atome des Moleküls, der im N₃S₃F₃ 0.30 Å beträgt, ist im N₃S₃Cl₃ im Mittel (die Ebenen sind hier nicht parallel) nur um 0.12 Å geringer. Die N-S-N-S-Diederwinkel, die wie dieser Abstand der Ebenen ebenfalls ein Maß für die Abweichung des (S-N)₃-Ringes von der Planarität sind, haben im N₃S₃F₃ Werte von 28.4 bis 28.5°.

Auffallend ist sowohl im $N_3S_3F_3$ als auch im $N_3S_3Cl_3$ die axiale Stellung der Halogen-Atome. Bei weitgehender sp³-Hybridisierung des Schwefels nehmen die nichtbindenden Elektronenpaare damit die äquatoriale Lage ein. Berücksichtigt man ihre räumliche Ausdehnung und ihre abstoßende Wirkung, besonders auf die Elektronen der π -Bindungen, so nimmt ihr Einfluß in dieser Stellung ein Minimum an; dadurch sind sie möglicherweise bestimmend für die sesselförmige Konformation der Ringe. Die axialen Halogen-Atome nähern sich dabei fast bis an den van der Waals-Kontakt

⁹⁾ D. W. J. Cruickshank und A. P. Robertson, Acta Crystallogr. 6, 698 (1953).

¹⁰⁾ O. Glemser, A. Müller, D. Böhler und B. Krebs, Z. Anorg. Allg. Chem. 357, 184 (1968).

¹¹⁾ B. Krebs, E. Meyer-Hussein, O. Glemser und R. Mews, J. C. S. Chem. Commun. 1968, 1578.

¹²⁾ J. Haase, H. Oberhammer, W. Zeil, O. Glemser und R. Mews, Z. Naturforsch. 25a, 153 (1970).

¹³⁾ M. W. Dougill, J. Chem. Soc. 1963, 3211.

¹⁴⁾ A. Wilson und D. F. Carroll, J. Chem. Soc. 1960, 2548.

(intramolekularer F..., F-Abstand im $N_3S_3F_3$: 3.088 Å). Der um 12° größere N-S-Hal-Winkel im $N_3S_3Cl_3$ ist eine Folge der größeren Wirkungsradien der Chlor-Atome.

Intermolekulare Wechselwirkungen, wie sie beim $N_3S_3Cl_3$ zur Erklärung einiger sehr kurzer intermolekularer S...Cl-Abstände postuliert werden, existieren im $N_3S_3F_3$ nicht. Charge transfer-Effekte, auf die diese Wechselwirkungen im $N_3S_3Cl_3$ zurückzuführen sind, konnten damit beim schwer zu polarisierenden Fluor erwartungsgemäß nicht beobachtet werden. Der kürzeste intermolekulare F...F-Abstand ist mit 2.925 Å nahezu ebenso groß wie im $N_4S_4F_4^{(4)}$ und $(NPF_2)_3^{(13)}$ (beide 2.95 Å). Fast alle intermolekularen Abstände (Tab. 3) liegen über den von *Pauling*⁽¹⁵⁾ angegebenen Summen der van der Waals-Radien.

Den Strukturuntersuchungen entsprechend ist für die Bindungsverhältnisse in den $(S-N)_3$ -Sechsringen der trimeren Thiazylhalogenide (vgl. dazu auch die Verhältnisse im S₄N₄^{16,17)}) ein mehr oder weniger delokalisiertes p_{π} -d_{π}-Elektronensystem anzunehmen ^{18,19)}. Dieses Bindungssystem ist weitgehend analog zu dem der trimeren Cyclophosphazene (NPX₂)₃, für das neben einer "organischen", das ganze Ringsystem umfassenden Delokalisierung der p_{π} -d_{π}-Bindungen ^{20,21)} eine "inselförmige" Delokalisierung nur über einen P–N–P-Teil des Ringes postuliert worden ist ^{22,23)}. Offenbar läßt die Ausdehnung der d-Orbitale eine ausreichende Überlappung unter Bildung ähnlicher π -Bindungen auch noch bei den leicht gewellten Ringen der trimeren Thiazylverbindungen zu. Die Struktur von N₃S₃F₃ zeigt, daß entgegen früheren Annahmen ein vollständiger Bindungsausgleich im Ring durch die Anwesenheit der Fluoratome nicht gestört wird.

Wenn diese Delokalisierung, wie im N₄S₄F₄, nicht verwirklicht wird, können nicht Einflüsse der Elektronegativität von Substituenten eine Rolle spielen, sondern müssen sterische Gründe bestimmend sein. Besondere Bedeutung kommt im N₄S₄F₄ dabei der stark abstoßenden Wirkung des freien Elektronenpaares am Schwefel zu, das sich hier nicht mehr in äquatorialer Stellung symmetrisch zu den beiden S-N-Bindungen befindet und damit die Ausbildung einer weitgehend lokalisierten π -Bindung mit einem der beiden benachbarten N-Atome begünstigt.

Wir danken Herrn Prof. Dr. O. Glemser sehr für Unterstützung und wertvolle Diskussionen. Herrn Dr. G. G. Alange danken wir für die Darstellung der Einkristalle. Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser Dank für die Förderung unserer Arbeit.

- 17) P. Cassoux, J.-F. Labarre, O. Glemser und W. Koch, J. Mol. Structure 13, 405 (1972).
- ¹⁸⁾ Literatur bei: O. Glemser und R. Mews, Advan. Inorg. Chem. Radiochem. 14, 333 (1972).
- ¹⁹⁾ W. L. Jolly, Advan. Chem. Ser. **110**, 92 (1972).
- ²⁰⁾ D. P. Craig, M. L. Heffernan, R. Mason und N. L. Paddock, J. Chem. Soc. 1961, 1376.
- ²¹⁾ D. P. Craig, J. Chem. Soc. 1959, 997.
- ²²⁾ J. P. Faucher, J. Devanneaux, C. Leibovici und J.-F. Labarre, J. Mol. Structure 10, 439 (1971).
- 23) M. J. S. Dewar, E. A. C. Lucken und M. A. Whitehead, J. Chem. Soc. 1960, 2423.

¹⁵⁾ L. Pauling, Die Natur der Chemischen Bindung, Verlag Chemie GmbH, Weinheim/ Bergstr. 1968.

¹⁶⁾ R. Gleiter, J. Chem. Soc. A 1970, 3174.